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Abstract
There is increasing evidence that different transcription units are transcribed together in discrete nuclear
structures known as transcription factories. Various new techniques enable us to detect and characterize
these structures. We review the latest findings and discuss how they support a model for transcription and
chromosome organization.

Introduction
The sequence of the human genome has now been obtained,
but the way DNA with a contour length of approx. 2 m
might be compressed into a nucleus approx. 200 000 times
smaller is still a matter of debate. All agree on the first level of
folding, in which DNA is wrapped around histone octamers
to form nucleosomes, but the various properties of chromatin
have complicated the analysis of the higher-order structure.
First, chromatin is easily sheared when it is extracted from
nuclei, and then it often aggregates into an intractable gel.
Non-physiological buffers are often used to minimize
this, but they can distort the structure. Secondly, many
chromatin folds have dimensions below the resolution of
the light microscope (i.e. ∼200 nm), and use of the electron
microscope with its higher resolution introduces additional
problems of preserving structure in vacuo. As a result, many
conflicting results have been obtained, and these have led
to several different models. However, one enduring idea
is that chromosomes are looped by attachment either to
some subnuclear structure or to another part of the same
chromosome (e.g. [1–3]), and there is now evidence that
active transcription units strung along the chromosome
come together to form a ‘transcription factory’ inevitably
tying the intervening DNA into loops [4]. Here, we
discuss how some new techniques are adding to our under-
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standing of these transcription factories and genome organ-
ization.

Transcription occurs in factories
The first evidence that the human genome might be looped
came from experiments demonstrating the existence of super-
coiling in the DNA of nucleoids made by removing histones
with 2 M NaCl; such supercoils can only be maintained in
a linear chromosome if two or more points are tethered to
each other or to the substructure [5]. Furthermore, cutting
linear (nucleosome-covered) chromosomes randomly should
generate a few large fragments that are progressively cut into
smaller ones. However, when nuclei are treated with a non-
specific nuclease, few large fragments are released; instead,
many cuts are required to release any DNA, and the kinetics
fit a model in which at least two cuts are required to release
one small fragment from a loop [6,7]. It has also been shown
that an enhancer can activate its target promoter even when
the two are carried on different plasmids, or separated by a
biotin–streptavidin bridge [8,9]; we must then assume that in
the normal context, a physical interaction between the enhan-
cer and promoter on one chromosome will generate a loop.

The initial experiment that pointed to the transcription
machinery acting as a critical molecular tie that maintained the
loops involved growing cells in [3H]uridine to pulse-labelled
RNA and then removing most of the loop with a nuclease;
essentially all (nascent) [3H]RNA remained behind with the
templates. This indicates that active genes lie very close to
points of attachment [10]. Evidence suggesting that several
different transcription units cluster together was provided by
permeabilizing cells, and allowing engaged polymerases to ex-
tend their transcripts in BrUTP (bromouridine triphosphate);
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Figure 1 Different views of the nascent transcripts in HeLa cells

(A) Cells were permeabilized, nascent transcripts extended in BrUTP,

cells cryosectioned (100 nm), the resulting BrRNA immunolabelled

with FITC (green), nucleic acids counterstained with TOTO R©-3 (red)

and a fluorescence image collected on a confocal microscope. Newly

made BrRNA is concentrated in factories in the cytoplasm (made by

mitochondrial polymerases), nucleoplasm and nucleoli. Modified from

[48] with permission; image courtesy of A. Pombo. (B, C) Conventional

electron micrographs of spread transcription units. In (B), a crescent like

one of the two in the nucleolar factory in (A) has been stripped off the

underlying structure; approx. 125 transcripts can be seen engaged on

the rDNA unit. Adapted from [49] with permission. c© Society of the

European Journal of Endocrinology (1972). In (C), one of the approx. 8

active transcription units in a nucleoplasmic factory like the one in (A) is

shown; the template is associated with one polymerase and transcript.

Adapted from [13] with permission. c© 1998 The American Society for

Cell Biology. http//www.molbiolcell.org. (D). Electron micrograph of a

nucleoplasmic factory obtained using a specialized technique (ESI) that

can detect endogenous phosphorus and nitrogen in unstained sections.

HeLa cells were permeabilized, nascent transcripts extended in BrUTP,

the resulting BrRNA immunolabelled with 5-nm gold particles; after

sectioning (70 nm), maps of phosphorus (red), nitrogen (green), and

the gold particles (white) marking BrRNA were collected. The image

shows a merge of the three maps. Five gold particles mark BrRNA

in a nitrogen-rich factory (perimeter indicated). Absolute numbers of

nitrogen and phosphorus atoms within this perimeter can be calculated

by using nearby nucleosomes as references (as they contain known

numbers of atoms). Adapted from [43] with permission. Scale bars,

1 μm (A, B) and 100 nm (D).

(nascent) BrRNA was seen in a few discrete foci, the factories
(Figure 1) [11,12]. Quantitative analysis then showed that a
typical factory in the nucleoplasm of a HeLa cell contains ap-
prox. eight polymerases, each engaged on a different unit [13].

Clustering of active units ensures high local concen-
trations, enabling efficient interaction; for example, HeLa
nuclei contain an approx. 1 μM pool of RNA polymerase
II, but the local concentration in a factory is approx. 1 mM,
so few transcripts would then be made outside factories.

Two theoretical arguments suggest that components of the
transcriptional machinery are likely to cluster, and so form
factories [14]. First, many transcription factors dimerize, and
if they also bind to two sites on DNA that are a few kb apart,
they will inevitably loop the intervening DNA when they
come together. As GFP (green fluorescent protein)-tagging
shows that many transcription factors remain bound to
DNA for only a second or so, such ties (and the resulting
loops) would be transient. Secondly, two polymerases
engaged several kb apart on one template are likely to come
together spontaneously in the crowded nucleus through
what physicists call the ‘depletion-attraction’. Loops formed
in this way would last for as long as the polymerases remain
engaged, which can be for many hours in humans.

Results obtained with a new set of techniques now pro-
vide strong evidence for the existence of loops. For example,
3C (chromosome conformation capture) and its derivatives
involve fixing cells with formaldehyde and then analysing
which sequences tend to lie next to each other in three-
dimensional nuclear space [15–21]. Contacts between
Hbb-b1 (encoding β-globin) and its LCR (locus control
region) have extensively been studied [16,22]. The two are
often found together in liver cells where both are transcribed,
but not in brain cells where globin is silent (Figure 2A). (Many
other LCRs, and functional elements such as enhancers,
silencers and insulators, are also transcribed [23,24].) Then, it
is easy to imagine that the LCR and Hbb-b1 are bound to the
same factory [17,25,26], and that the LCR acts by bringing
its target genes closer to the relevant factory (Figure 2B).

Hbb-b1 can also be found close to Uros (uroporphyrino-
gen III synthase) and Eraf (erythroid-associated factor),
two genes located more than 20 Mbp away on the same
chromosome (Figure 2A) [17,25]. Proximity depends on
ongoing transcriptional initiation, suggesting that the genes
are transcribed together in the same factory [27]. Many of
the results described above have been confirmed using RNA
TRAP (tagging and recovery of associated proteins) and
RNA FISH (fluorescence in situ hybridization) [17,22]. 3C
has also been used to show that EKLF (erythroid Krüppel-
like factor), GATA-1 (GATA-binding protein 1) and FOG-1
(friend of GATA-1) [28,29] {but not another regulator, p45
NF-E2 (nuclear factor, erythroid-derived 2) [30]} contribute
to the LCR–Hbb-b1 interaction. Inhibiting transcription
does not cause the LCR to disengage from the gene, sug-
gesting that transcription may not be required to maintain the
structure [27]. Note that it is unlikely that loops are generated
by the fixation used for 3C, as another method, ‘Dam identi-
fication’, provides evidence for loops in living cells [31].

Specialized transcription factories
Can any gene be transcribed in any factory, or do factories
specialize in transcribing different types of gene? Are
genes that encode components of one biosynthetic pathway
and which are expressed co-ordinately (e.g. Hbb-b1, Uros and
Eraf ) transcribed in the same factory? There is now good
evidence that factories do specialize, but how many different
types of factory there are remains to be established.
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Figure 2 A model for LCR function

(A) The interaction landscape of mouse Hbb-b1 in fetal liver cells. The

position of globin genes, its LCR and Eraf on chromosome 7 are indicated.

Grey arrows: interactions detected by 3C and 4C between Hbb-b1 on this

and other chromosomes in fetal liver, where Hbb-b1 is transcribed; 80%

are with other active units (compared with 13% seen in fetal brain).

(B) A model for LCR function. (i) In the erythroid stem cell, the globin

gene is tethered to a factory (pink sphere). As it is in a long loop far from

the factory and embedded in heterochromatin, it is unlikely to diffuse to

the factory and initiate. The LCR is closer to the factory, and collides with it

more frequently. During erythropoiesis, the concentration of some critical

transcription factor increases; this factor increases the chances that the

promoter in the LCR will initiate when it collides with a polymerase

in the factory. (ii) The LCR has now initiated, and the polymerase in

the factory is reeling in its template (grey arrow); this movement has

brought the globin gene out of the ‘cold’ heterochromatin into a ‘hot’

region close to the factory where it has a much higher chance of colliding

with a polymerase in the factory and so initiating. In practice, a number

of different transcription factors and promoters are probably involved in

bringing the globin gene close to the factory. Modified from Experimental

Cell Research, 229, Iborra, F. J., Pombo, A., McManus, J., Jackson, D.A. and

Cook, P.R., The topology of transcription by immobilized polymerases,

pp. 167–173, c© 1996, with permission from Elsevier.

The nucleolus provides the best example of a specialized
factory; it is dedicated to 45S rRNA synthesis and ribosome
production. Human rDNA loci are carried on chromosomes
13, 14, 15, 21 and 22; each locus encodes approx. 80 tandem
repeats of the 45S rRNA gene, and forms a secondary
constriction, or NOR (nucleolar organizing region), in the
mitotic chromosome. Inactive RNA polymerase I and its
transcription factor UBF (upstream binding factor) are bound
to some NORs, and, on exit from mitosis, these NORs fuse
to form one or more nucleoli [32]. NORs lacking bound UBF

and polymerase remain inactive and do not fuse [33]. During
interphase, nascent rRNA is found in the ‘dense fibrillar
component’ (i.e. in the crescent in the box in Figure 1A)
on the surface of a ‘fibrillar centre’ containing polymerase I
and UBF, and newly completed transcripts are processed in
a surrounding ‘granular component’ to emerge as mature
ribosomal subunits into the nucleoplasm [34]. Here, several
active transcription units cluster into one dedicated factory
that contains the machinery necessary to make a ribosome.
Stripping one crescent off the surface of the fibrillar centre
then yields the iconic image of a ‘Christmas tree’ (Figure 1B).

Is this kind of specialization carried further, so that ‘poly-
merase II factories’ only transcribe class II units, and
‘polymerase III factories’ only class III units? Various studies
indicate they do, and the most convincing one exploits
the steric hindrance that occurs between immunolabelling
probes [35]. Anti-polymerase II blocks access to RNA being
made by polymerase II, but not to polymerase III protein
or its transcripts; conversely, anti-polymerase III blocks
access to RNA being made by polymerase III, but not to
polymerase II protein or its transcripts. Do polymerase II
factories specialize further still? Again, it seems they do.
For example, some factories contain higher concentrations
of transcription factors than others [36,37], and we have
recently developed an assay that allows us to establish the
extent of specialization. Pairs of plasmids encoding different
promoters are introduced into cells, and their nascent
transcripts localized by RNA FISH; different polymerase II
promoters (and the presence of an intron) target plasmids to
different host factories (Figure 2; [38]).

Given the evidence that factories can specialize in the
transcription of class I, II or III units, and into class II units
with or without introns, is it possible that they can further
specialize to transcribe genes that share transcription factors
in their regulation? We must now go on to establish how
many different types of factory there might be. Note that
active globin genes and their LCRs do not invariably share
the same factory [17], perhaps because the stochastic nature
of transcription [39–41] ensures that a gene associates with a
factory only when it is transcribed, and because a gene might
be transcribed in any one of a number of different factories.

The structure of nucleoplasmic factories
Imaging nucleoplasmic factories remains difficult, largely
because they are small enough to lie below the resolution of
most light microscopes. In the electron microscope, nascent
RNA is found in clusters approx. 50 nm in diameter spread
throughout the nucleoplasm [35]. The density and diameter of
these nucleoplasmic clusters is very similar in nuclei in human,
mouse and newt and in mouse embryonic stem cells as they
differentiate [42]. We have recently imaged nucleoplasmic
factories using ESI (electron spectroscopic imaging), a power-
ful ultrastructural method that can be used to map atomic
distributions in unstained preparations [43]. Nascent RNA
is almost invariably found on the surface of polymorphic
nitrogen-rich (but phosphorus-poor) structures with min-
imum diameter of approx. 87 nm and a mass of 10 MDa
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Figure 3 Models for genome organization

In both prokaryotes and eukaryotes, structure determines function (and

vice versa); genes tethered close to a factory are more likely to initiate

than distant ones. In bacteria, transcription of the circular chromosome

(top), followed by aggregation of polymerases (ovals) and transcripts

(red lines), generates a looped structure (bottom) that is self-sustaining

(as promoters in active genes now lie close to polymerases). Reproduced

from [50] with permission. In eukaryotes (and specifically in a HeLa cell),

DNA is coiled around the histone octamer, and runs of nucleosomes form

a zigzag string. At the intermediate level in the hierarchy, this string is

organized into loops (average contour length 86 kb; range 5–200 kb)

by attachment to transcription factors (diamond) and engaged RNA

polymerases (ovals). (There are other ties, in addition to these major

ones.) A total of 10–20 such loops (only a few are shown) form a

cloud around the factory, to give a structure equivalent to that of the

bacterial nucleoid. [Active transcription units that are nearest neighbours

are shown bound to one factory here, but the structure is more complex;

units distant on the genetic map (perhaps on different chromosomes)

will sometimes bind to the factory.] Active polymerases do not track

along their templates; they are bound to a transcription factory and

act both as motors that reel in their templates and as one of the

critical structural ties that maintain the loops. Loops inevitably appear

and disappear as polymerases initiate and terminate, and the factors

bind and dissociate. Nucleosomes in long loops are static and acquire

a (heterochromatic) histone code that spreads down the fibre; they

also aggregate on to the lamina, nucleoli and chromocentres. Each

transcription factory contains one type of RNA polymerase (i.e. I, II or

III) to the exclusion of others, and some factories are richer in certain

transcription factors than others (and so are involved in the transcription

of specific sets of genes). Individual components in the factor exchange

continually with others in the soluble pool. A total of 50–200 successive

clouds strung along the chromosome form a territory (the general path

of DNA between clouds is shown). Adapted from [51] with permission.

(calculated by reference to nucleosomes with known numbers
of phosphorus and nitrogen atoms). Stripping an active
transcription unit off the surface of the factory followed by

electron microscopy yields the image shown in Figure 1(C).
Then, it seems that the organization of nucleolar (poly-
merase I) and nucleoplasmic (polymerase II) factories is
similar, with active polymerases and their templates on the
surface of a dense core.

A model for all genomes
The results described above support a model for genome
organization (Figure 3) in which the central architectural
feature is the clustering of active units into factories, with
engaged polymerases and transcription factors acting as
the ties that organize the loops [2]. In eukaryotes, strings
of factories would underlie the structure of chromosome
territories, with chromatin in long loops aggregating into het-
erochromatin. This organization is supported by results from
a 3C derivative, known as 4C (3C-on-chip), which show that
active units cluster together, away from inactive chromatin
[25]. Interactions between different chromosomes can also be
detected by 4C [18,21,45]; presumably, fibres from the dif-
ferent chromosomes intermingle [44] because they share the
same factory. This model also explains the finding that tran-
scriptional inhibition alters the size and morphology of chro-
mosome territories and regions of chromosome intermingling
[44,46].

This model is easily extended to bacteria [4], and it can
explain how the interphase organization is converted into
a mitotic chromosome [2], how chromosomes might pair
[47] and how regulatory motifs (e.g. LCRs, enhancers,
barriers and silencers) might work [4,24].
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